- 发表文章
- 代表文章
2025
138. Towards Rational Design of Confined Catalysis in Carbon Nanotube by Machine Learning and
Grand Canonical Monte Carlo Simulations, C. Yang, X. Fu*, D. Luan, J. Xiao*,
Angew. Chem. Int. Ed., 2025, accepted.
137. Recent Advances in Electrochemical CO2 Reduction Catalyzed by Single-Atom Alloys,
W. Wu, J. Long* and J. Xiao*,
ChemCatChem, 2025, accepted.
136. CO2 Utilization for Aromatics Synthesis over Zeolites,
L. Li, H. Li*, H. Li, W. Ding, and J. Xiao*,
Catal. Sci. Technol., 2025, accepted.
2024
135. Surface Structure Dependent Activation of Hydrogen over Metal Oxides during Syngas Conversion,
B. Bai†, Y. Ye†, F. Jiao*, J. Xiao, Y. Pan, Z. Cai, M. Chen, X. Pan*, X. Bao
J. Am. Chem. Soc., 2024, 146, 34909-34915.
134. Tuning the Co pre–oxidation process of Co3O4 via geometrically reconstructed F-Co-O
active sites for boosting acidic water oxidation,
Y. Wang†, P. Guo†, J. Zhou, B. Bai, Y. Li, M. Li, P. Das, X. Wu, L. Zhang, Y. Cui, J. Xiao* and Z. Wu*,
Energy Environ. Sci., 2024, 17, 8820-8828.
133. A Theoretical Perspective for Ammonia Synthesis:Nitric Oxide or Nitrate Electroreduction?
Q. Wang, P. Guo, H. Li, J. Long, S. Yang* and J. Xiao*,
Small Methods, 2024, 2401208.
132. Theoretical Design of Electrocatalytic Urea Synthesis from Carbon Dioxide and Nitric Oxides,
J. Long, D. Luan*, X. Fu, H. Li, J. Xiao*,
ACS Catal. 2024, 14, 14678-14687.
131. Computational insights for electrocatalytic synthesis of glycine,
L. Li, J. Long*, X. Fu, D. Luan, P. Guo, H. Jing, H. Li, J. Xiao*,
ACS Catal. 2024, 14, 13381-13389.
130. Efficient Electrocatalytic Oxidation of Glycerol to Formate Coupled with Nitrate Reduction over
Cu-doped NiCo Alloy Supported on Nickel Foam,
C. Li,† H. Li,† B. Zhang,† H. Li*, Y. Wang, X. Wang, P. Das, Y. Li, X. Wu, Y. Li, Y. Cui, J. Xiao, Z. Wu*,
Angew. Chem. Int. Ed., 2024, e202411542.
129. Electrochemical Reaction Kinetics at Interfacial Constant Potential,
H. Li, D. Luan*, J. Long, P. Guo, J. Xiao*,
ACS Catal., 2024,14, 12814-12823.
128. Turning copper into an efficient and stable CO evolution catalyst beyond noble metals,
J. Xue†, X. Dong†, C. Liu, J. Li, Y. Dai, W. Xue, L. Luo, Y. Ji, X. Zhang, X. Li, Q. Jiang, T. Zheng, J. Xiao*, C. Xia*,
Nat. Commun., 2024, 15: 5998.
DOI: 10.1038/s41467-024-50436-4
127. Selective Electrosynthesis of Ethanol via Asymmetric C–C Coupling in Tandem CO2 reduction,
P. Luan†, X. Dong†, L. Liu†, J. Xiao, P. Zhang, J. Zhang, H. Chi, Q. Wang, C. Ding, R. Li and C. Li*,
ACS Catal., 2024, 14, 8776–8785.
126. Computational insights on structural sensitivity of cobalt in NO electroreduction to ammonia
and hydroxylamine, P. Guo, D. Luan, H. Li, L. Li, S. Yang, J. Xiao*,
J. Am. Chem. Soc., 2024, 146, 20, 13974–13982.
125. Towards rational design in electrochemical denitrification by analyzing pH–dependence,
H. Li, D. Luan, J. Long, X. Fu, and J. Xiao*,
Natl. Sci. Rev., 2024, 11: nwae147.
124. Fundamental insights on the electrochemical nitrogen oxidation over metal oxides,
J. Long, D. Luan, X. Fu, H. Li, H. Jing, J. Xiao*,
ACS Catal., 2024, 4423-4431.
123. Acid Stable Manganese Oxides for Proton Exchange Membrane Water Electrolysis. S. Kong†,
A. Li†*, J. Long†, K. Adachi, D. Hashizume, Q. Jiang, K. Fushimi, H. Ooka, J. Xiao* and R. Nakamura*,
Nat. Catal., 2024, 7, 252-261.
DOI: 10.1038/s41929-023-01091-3
122. Breaking the Ru-O-Ru symmetry of RuO2 catalyst for sustainable acidic water oxidation.
Y. Wang†, X. Lei†, B. Zhang, B. Bai, P. Das, T. Azam, J. Xiao* and Z. Wu*,
Angew. Chem. Int. Ed., 2024, 63, e202316903.
2023
121. Local electron environment regulation of spinel CoMn2O4 induced effective reactant adsorption
and transformation of lattice oxygen for toluene oxidation. C. Li†, C. Yang†, Y. Ren, H. Sun, H. Wang,
J. Xiao* and Z. Qu*,
Environ. Sci. Technol., 2023, 57, 51, 21888-21897.
120. Electrochemical synthesis of ammonia from nitric oxide using a copper-tin alloy catalyst. J. Shao†,
H. Jing†, P. Wei, X. Fu, L. Pang, Y. Song, K. Ye, M. Li, L. Jiang, J. Ma, R. Li, R. Si, Z. Peng, G. Wang*, J. Xiao*,
Nat. Energy, 2023, 8, 1273-1283.
DOI: 10.1038/s41560-023-01386-6
119. Improved Electrocatalytic Activity and Stability by Single Iridium Atoms on Iron-based Layered
Double Hydroxides for Oxygen Evolution.
J. Cao†, T. Mou†, B. Mei, P. Yao, C. Han, X. Gong, P. Song, Z. Jiang, T. Frauenheim*, J. Xiao*, W. Xu*,
Angew. Chem. Int. Ed., 2023, 62, e202310973.
118. Methyl radical chemistry in non – oxidative methane activation over metal single sites.
X. Huang†, D. Eggart†, G. Qin†, B. B. Sarma, A. Gaur, J. Yang. Y. Pan, M. Li, J. Hao, H. Yu, A. Zimina, X. Guo,
J. Xiao, J. D. Grunwaldt*, X. Pan*, X. Bao*.
Nat. Commun., 2023, 14: 5716.
DOI: 10.1038/s41467-023-41192-y
117. CO2 fixation with aryl bromide towards carboxylic acid enabled by bifunctional CuAg electrocatalyst.
Y. Cao†, D. Li†, C. Ding, S. Ye, X. Zhang, H. Chi, L. Liu, Y. Liu*, J. Xiao*, C. Li*.
ACS Catal., 2023, 13, 11902–11909.
116. Computational Insights on Electrocatalytic Synthesis of Methylamine from Nitrate and Carbon
Dioxide. H. Jing, J. Long, H. Li, X. Fu, J. Xiao*.
ACS Catal., 2023, 13, 9925-9935.
115. Activity trend and selectivity of electrochemical ammonia synthesis in reverse artificial nitrogen cycle.
L. Li and J. Xiao*.
ChemSusChem, 2023, 16, e202300593.
114. Oxygen-saturated strong metal-support interactions triggered by water on titania supported
catalysts. H. Wang†, X. Dong†, Y. Hui, Y. Niu, B. Zhang, L. Liu, J. Cao, M. Yabushita, Y. Nakagawa,
K. Tomishige, Y. Qin, L. Song, J. Xiao*, L. Wang*, F. Xiao.
Adv. Funct. Mater., 2023, 2304303.
113. Enhanced Catalytic Performance of La–doping CoMn2O4 Catalyst by Regulating Oxygen Species
Activity for VOCs Oxidation. Y. Ren, X. Lei, H. Wang, J. Xiao, Z. Qu*,
ACS Catal., 2023, 13, 8293-8306.
112. Manipulating local coordination of isolated copper catalyst enables efficient CO2–to–CH4 conversion.
Y. Dai†, H. Li†, C. Wang, W. Xue, M. Zhang, D. Zhao, J. Xue, J. Li, L. Luo, C. Liu, X. Li, P. Cui, Q. Jiang, T. Zheng,
J. Xiao*, C. Xia*, J. Zeng*,
Nat. Commun., 2023, 14: 3382.
DOI: 10.1038/s41467-023-39048-6
111. Disentangling the activity–selectivity trade–off in catalytic conversion of syngas to light olefins.
F. Jiao†, B. Bai†, G. Li†, X. Pan*, Y. Ye, S. Qu, C. Xu, J. Xiao, Z. Jia, W. Liu, T. Peng, Y. Ding, C. Liu, J. Li, X. Bao*,
Science, 2023, 380, 727–730.
110. Tuning the crystal phase to form MnGaOx-spinel for highly efficient syngas to light olefins.
B. Bai†, C. Guo†, F. Jiao*, J. Xiao*, Y. Ding, S. Qu, Y. Pan, X. Pan*, X. Bao,
Angew. Chem. Int. Ed., 2023, 62, e202217701.
109. Computational insights on alloying and confinement effects on promoted activity and selectivity
of C2 oxygenate over Rh-based catalysts. G. Qin, C. Guo, X. Fu, J. Long, H. Jing, H. Li, J. Xiao*,
J. Phys. Chem. C, 2023, 127, 15, 7239-7247.
108. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic
water oxidation. Y. Wang†, R. Yang†, Y. Ding, B. Zhang, H. Li, B. Bai, M. Li, Y. Cui, J. Xiao*, Z. Wu*,
Nat. Commun., 2023, 14, 1412.
DOI: 10.1038/s41467-023-37008-8
107. Accelerating electrochemical CO2 reduction to multi–carbon products via asymmetric
intermediates binding at confined nanointerfaces.
J. Zhang†, C. Guo†, S. Fang, X. Zhao, L. Li, H. Jiang, Z. Liu, Z. Fan, W. Xu, J. Xiao*, M. Zhong*,
Nat. Commun., 2023, 14: 1298.
DOI:10.1038/s41467-023-36926-x
106. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from
nitrate. H. Jing, J. Long, H. Li, X. Fu, J. Xiao*,
Chin. J. Catal., 2023, 48, 205-213.
DOI: 10.1016/S1872‐2067(23)64413‐4
105. Adaptive Electric Fields Embedded Electrochemical Barrier Calculations.
D. Luan and J. Xiao*,
J. Phys. Chem. Lett., 2023, 14, 685-693.
DOI: 10.1021/acs.jpclett.2c03588
104. Selective CO2 electrolysis to CO using isolated antimony alloyed copper. J. Li†, H. Zeng†, X. Dong†,
Y. Ding, S. Hu, R. Zhang, Y. Dai, P. Cui, Z. Xiao, D. Zhao, L. Zhou, T. Zheng, J. Xiao*, J. Zeng*, C. Xia*,
Nat. Commun., 2023, 14: 340.
DOI: 10.1038/s41467-023-35960-z
103. Steering from electrochemical denitrification to ammonia synthesis.
H. Li, J. Long, H. Jing, J. Xiao*,
Nat. Commun, 2023, 14: 112.
DOI: 10.1038/s41467-023-35785-w
102. Efficient electrolytic conversion of nitrogen oxyanion and oxides to gaseous ammonia in molten
alkali. W. Zhang†, H. Li†, J. Xiao*, X. Zhu*, W. Yang,
Chem. Eng. J., 2023, 456, 141060.
DOI: 10.1016/j.cej.2022.141060
101. Blocking the reverse reactions of overall water splitting on Rh/GaN–ZnO photocatalyst modified
with Al2O3. Z. Li†, R. Li†, H. Jing, J. Xiao, H. Xie, F. Hong, N. Ta, X. Zhang, J. Zhu, C. Li*
Nat. Catal., 2023, 6, 80-88.
DOI: 10.1038/s41929-022-00907-y
100. The progresses in electrochemical reverse artificial nitrogen cycle.
J. Long, H. Li, J. Xiao*,
Curr. Opin. Electrochem., 2023, 37: 101179.
DOI: 10.1016/j.coelec.2022.101179
99. Rivet of cobalt in siliceous zeolite for catalytic ethane dehydrogenation. L. Liu†, H. Li†, H. Zhou†,
S. Chu, L. Liu, Z. Feng, X. Qin, J. Qi, J. Hou, Q. Wu, H. Li, X. Liu*, L. Chen, J. Xiao*, L. Wang*, F. Xiao,
Chem, 2023, 9, 1-13.
DOI: 10.1016/j.chempr.2022.10.026
98. Activation of transition metal (Fe, Co and Ni) – oxide nanoclusters by nitrogen defects in carbon
nanotube for selective CO2 reduction reaction. Y. Cheng*, J. Chen, C. Yang, H. Wang, B. Johannessen,
L. Thomsen, M. Saunders, J. Xiao*, S. Yang, S. P. Jiang*,
Energy Environ. Mater., 2023, 6, e12278.
2022
97. Fundamental limit of selectivity in photocatalytic denitrification over titania.
P. Guo, P. Deak, X. Fu, T. Frauenheim, J. Xiao*,
J. Phys. Chem. Lett., 2022, 13, 11051-11058.
DOI: 10.1021/acs.jpclett.2c02506
96. Predictive theoretical model for selective electroreduction of nitrate to ammonia.
T. Mou†, Y. Wang†, P. Deak, H. Li, J. Long, X. Fu, B. Zhang, T. Frauenheim, J. Xiao*,
J. Phys. Chem. Lett., 2022, 13, 9919-9927.
DOI: 10.1021/acs.jpclett.2c02452
95. Potential dependence of ammonia selectivity of electrochemical nitrate reduction on copper oxide.
R. Yang, H. Li, J. Long, H. Jing, X. Fu, J. Xiao*,
ACS Sustain. Chem. Eng., 2022, 10, 43, 14343-14350.
DOI: 10.1021/acssuschemeng.2c04847
94. Exceptional catalytic activity of oxygen evolution reaction via two–dimensional graphene multilayer
confined metal-organic frameworks.
S. Lyu†, C. Guo†, J. Wang, Z. Li, B. Yang, L. Lei, L. Wang, J. Xiao*, T. Zhang*, Y. Hou*,
Nat. Commun., 2022, 13, 6171.
DOI: 10.1038/s41467-022-33847-z.
93. Atomic insight into the local structure and microenvironment of isolated Co–motif in MFI zeolite
framework for propane dehydrogenation.
Z. Hu†, G. Qin†, J. Han, W. Zhang, N. Wang, Y. Zheng, Q. Jiang, T. Ji, Z. Yuan, J. Xiao*, Y. Wei*, Z. Liu*,
J. Am. Chem. Soc., 2022, 144, 27, 12127-12137.
92. Direct electro-synthesis of valuable C=N compound from NO.
X. Zhang†, H. Jing†, S. Chen, B. Liu, L. Yu, J. Xiao*, D. Deng*,
Chem Catal., 2022, 2, 1807-1818.
DOI:10.1016/j.checat.2022.06.003
91. Computational Design of Spinel Oxides through Coverage-dependent Screening on the Reaction
Phase Diagram. C. Guo*, X. Tian, X. Fu, G. Qin, J. Long, H. Li, H. Jing, Y. Zhou*, J. Xiao,
ACS Catal., 2022, 12, 6781-6793.
90. Bifunctional Zeolites-Sliver catalyst enabled tandem oxidation of formaldehyde at low temperatures.
N. Li†, B. Huang†, X. Dong†, J. Luo, Y. Wang, D. Miao, Y. Pan, F. Jiao*, J. Xiao*, Z. Qu*,
Nat. Commun., 2022, 13, 2209.
DOI: 10.1038/s41467-022-29936-8
89. Oxygen activation on Ba-containing perovskite materials. Y. Zhu†, D. Liu†, H. Jing†, F. Zhang, X. Zhang,
S. Hu, L. Zhang, J. Wang, L. Zhang, W. Zhang, B. Pang, P. Zhang, F. Fan, J. Xiao,W. Liu, X. Zhu*, W. Yang*,
Sci. Adv., 2022, 8 (15), eabn4072
88. Theoretical Understanding of Electrocatalysis beyond Thermodynamic Analysis.
H. Li, C. Guo, J. Long, X. Fu, J. Xiao*,
Chin. J. Catal., 2022, 43, 2746-2756 (perspective).
DOI: 10.1016/S1872-2067(22)64090-7
87. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid.
A. Li† , S. Kong† , C. Guo† , H. Ooka, K. Adachi, D. Hashizume, Q, Jiang, H. Han, J. Xiao*, R. Nakamura*,
Nat. Catal., 2022, 5, 109-118.
DOI: 10.1038/s41929-021-00732-9
86. Rational design of CO2 electroreduction cathode via in situ electrochemical phase transition.
S. Hu†, H. Li†, X. Dong, Z. Cao, B. Pang, L. Zhang, W. Yu, J. Xiao*, X. Zhu*, W. Yang,
J. Energy Chem, 2022, 66, 603–611.
DOI: 10.1016/j.jechem.2021.08.069
2021
85. Toward understanding and simplifying the reaction network of ketene production on ZnCr2O4
spinel catalysts. X. Fu and J. Xiao*,
J. Phys. Chem. C, 2021, 125, 45, 24902-24914..
84. Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia.
Y. Huang†, J. Long†, Y. Wang, N. Meng, Y. Yu*, S. Lu, J. Xiao*, B. Zhang,
ACS Appl. Mater. Inter., 2021, 13, 46, 54967-54973.
83. Understanding the Product Selectivity of Syngas Conversion on ZnO Surfaces with Complex
Reaction Network and Structural Evolution. X. Fu, J. Li, J. Long, C. Guo, J. Xiao*,
ACS Catal., 2021, 11, 12264–12273.
82. Advances in Electrochemical Ammonia Synthesis Beyond the Use of Nitrogen Gas as a Source.
T. Mou, J. Long, T. Frauenheim, J. Xiao*,
ChemPlusChem, 2021, 86, 1211-1224 (invited review).
81. Activity and mechanism mapping of photocatalytic NO2 conversion on the anatase TiO2(101) surface.
P. Guo, X. Fu, P. Deák, T. Frauenheim, J. Xiao*,
J. Phys. Chem. Lett., 2021, 12, 7708-7716.
DOI: 10.1021/acs.jpclett.1c02263
80. Copper-catalyzed exclusive CO2 to pure formic acid conversion via single-atom alloying.
T. Zheng† , C. Liu† , C. Guo† , M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C. Pao, J. Xiao*, C. Xia*, J. Zeng*,
Nat. Nanotechnol., 2021, 16, 1386-1393.
DOI: 10.1038/s41565-021-00974-5
79. Unveiling Potential Dependence in NO Electroreduction to Ammonia.
J. Long, C. Guo, X. Fu, H. Jing, G. Qin, H. Li, J. Xiao*,
J. Phys. Chem. Lett., 2021, 12, 6988-6995.
DOI: 10.1021/acs.jpclett.1c01691
78. Molecular routes of dynamic autocatalysis for methanol to hydrocarbon (MTH) reaction.
S. Lin†, Y. Zhi†, W. Chen, H. Li, W. Zhang, C. Lou, X. Wu, S. Zeng, S. Xu, J. Xiao*, A. Zheng*, Y. Wei*, Z. Liu*,
J. Am. Chem. Soc., 2021, 143,12038-12052.
77. Ultrafine nickel nanoparticles encapsulated in N-doped carbon promoting hydrogen oxidation
reaction in alkaline media. J. Wang† , X. Dong† , J. Liu*, W. Li, L. T. Roling, J. Xiao*, L. Jiang*,
ACS Catal., 2021, 11. 12, 7422-7428.
76. Material and Composition Screening Approaches in Electrocatalysis and Battery Research.
T. Kadyk, J. Xiao*, H. Ooka, J. Huang, K. S. Exner*,
Front. Energy Res., 9, 699376, 2021 (Editorial)
75. Elucidation of the Synergistic Effects of Dopants and Vacancies on Promoted Selectivity for CO2
Electroreduction to Formate. Z. Li†, A. Cao†, Q. Zheng, Y. Fu, T. Wang, K. T. Arul, J. L. Chen, B. Yang,
N. M. Adli, L. Lei, C. L. Dong, J. Xiao*, G. Wu*, Y. Hou*,
Adv. Mater., 2021, 33, 2005113.
74. Heterogeneous Catalysts: Advanced Design, Characterization and Applications (High-Throughput
Computational Design of Novel Catalytic Materials).
C. Guo, J. Chen, J. Xiao*,
Wiley-VCH GmbH, 2021, 497-524.
(Book Editor: Wey Yang Teoh, Atsushi Urakawa, Yun Hau Ng, Patrick Sit)
73. One-dimensional metal-organic nanowires-derived catalyst of carbon nanobamboos with
encapsulated cobalt nanoparticles for oxygen reduction.
W. Hong†, C. Guo†, S. W. Koh, J. Ge, Q. Liu, J. Xiao*, H. Li*,
J. Catal., 2021, 394, 366-375.
DOI: 10.1016/j.jcat.2020.10.030
72. Toward Computational Design of Chemical Reactions with Reaction Phase Diagram.
C. Guo†, X. Fu†, J. Long, H. Li, G. Qin, A. Cao, H. Jing, J. Xiao*,
WIREs Comput. Mol. Sci., 2021, 11, 5, e1514.(invited review)
71. Incorporation of layered tin (IV) phosphate in graphene framework for high performance lithium-
sulfur batteries. H. Yuan†, N. Zhang†, L. Tian, L. Xu, Q. Shao, S. D. Alizaidi, J. Xiao*, J. Chen*,
J. Energy. Chem., 2021, 53, 99-108.
DOI: 10.1016/j.jechem.2020.05.028
2020
70. Theoretical Insights on the Synergy and Competition between Thermochemical and Electrochemical
Steps in Oxygen Electroreduction. C. Guo, X. Fu, J. Xiao*,
J. Phys. Chem. C, 2020, 124, 47, 25796-25804.
69. Reaction-induced strong metal-support interactions between metals and inert boron nitride
nanosheets. J. Dong, Q. Fu* H. Li, J. Xiao, B. Yang, B. Zhang, Y. Bai, T. Song, R. Zhang, L. Gao, J. Cai,
H. Zhang, Z. Liu, X. Bao,
J. Am. Chem. Soc., 2020, 142, 40, 17167-17174.
68. Enhancing CO2 electroreduction to methane with cobalt phthalocyanine and zinc-nitrogen-carbon
tandem catalyst. L. Lin†, T. Liu†, J. Xiao, H. Li, P. Wei, D. Gao, B, Nan, R. Si, G. Wang*, X. Bao,
Angew. Chem. Int. Ed., 2020, 59, 22408-22413.
67. Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite
modulation. Z. Yang†, H. Li†, H. Zhou†, L. Wang*, L. Wang, Q. Zhu, J. Xiao*, X. Meng, J. Chen, F. S. Xiao*,
J. Am. Chem. Soc., 2020, 142, 38,16429-16436.
66. The rational design of single-atom catalysts for electrochemical ammonia synthesis via a descriptor-
based approach. J. Long, Xiaoyan Fu and J. Xiao*,
J. Mater. Chem. A, 2020, 8, 17078-17088.
65. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov
hydroboration of alkenes. Q. Xu†, C. Guo†, S. Tia†n, J. Zhang, W. Chen, W. Cheong, L. Gu, L. Zheng, J. Xiao,
Q. Liu, B. Li, D. Wang*, Y. Li,
Sci. China. Mater., 2020, 63, 6, 972-981.
DOI: 10.1007/s40843-020-1334-6
64. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide
electroreduction to formate. Y. Shi† , Y. Ji† , J. Long† , Y. Liang, Y. Liu, Y. Yu, J. Xiao*, B. Zhang*,
Nat. Commun., 2020, 11, 3415.
DOI: 10.1038/s41467-020-17120-9
63. Direct electrochemical ammonia synthesis from nitric oxide.
J. Long†, S. Chen†, Y. Zhang, C. Guo, X. Fu, D. Deng*, J. Xiao*,
Angew. Chem. Int. Ed., 2020, 59, 9711-9718.
62. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass
activity. K.Ye†, A. Cao†, J. Shao†, G. Wang, R. Si, N. Ta, J. Xiao*, G. Wang*,
Sci. Bull., 2020, 65 (9), 711-719.
DOI: 10.1016/j.scib.2020.01.020
61. Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction.
Q. Yu, C. Guo, J. Ge, Y. Zhao, Q. Liu, P. Gao, J. Xiao*, H. Li*,
J. Power Sources, 2020, 453, 227846.
DOI: 10.1016/j.jpowsour.2020.227846
60. Toward a comparative description between transition metal and zeolite catalysts for methanol
conversion. H. Li, C. Guo, L. Huang, J. Long, X. Fu, W. Chu*, J. Xiao*,
Phys. Chem. Chem. Phys., 2020, 22, 5293-5300.
59. Direct conversion of syngas to ethanol within zeolite crystals. C. Wang†, J. Zhang†, G. Qin†, L. Wang*,
E. Zuidema, Q. Yang, S. Dang, C. Yang, J. Xiao*, X. Meng, C. Mesters, F.-S. Xiao*,
Chem, 2020, 6, 646-657.
DOI: 10.1016/j.chempr.2019.12.007
2019
58. PdZn alloy nanoparticles encapsulated within a few layers of graphene for efficient semi-
hydrogenation of acetylene. L. Yang, Y. Guo, J. Long, L. Xia*, D. Li, J. Xiao*, H. Liu*,
Chem. Commun., 2019, 55, 14693-14696.
57. Vertical Silver@Silver Choloride Core-Shell Nanowire Array for Carbon Dioxide Electroreduction.
J. Ge†, J. Long†, Z. Sun†, H. Feng, J. Hu, SW. Koh, Q. Yu, J. Xiao*, H. Li*,
ACS Appl. Energy Mater., 2019, 2 (9), 6163-6169.
56. Synergistic Catalysis over Iron-Nitrogen Sites Anchored with Cobalt Phthalocyanine for Efficient CO2
Electroreduction. L. Lin, H. Li, C. Yan, H. Li, R. Si, M. Li, J. Xiao, G. Wang*, X. Bao,
Adv. Mater., 2019, 31, 1903470.
55. Combination of Theory and Experiment Achieving a Rational Design of Electrocatalysts for Hydrogen
Evolution on Hierarchically Mesoporous CoS2 Microsphere.
A. Wang†, M. Zhang†, H. Li, F. Wu, K. Yan*, J. Xiao*,
J. Phys. Chem. C, 2019, 123 (22), 13428-13433.
54. Highly Active Metallic Nickel Sites Confined in N-doped Carbon Nanotubes Toward Significantly
Enhanced Activity of CO2 Electroreduction.
W. Zheng, C. Guo, J. Yang, F. He*, B. Yang, Z. Li, L. Lei, J. Xiao*, G. Wu*, Y. Hou*,
Carbon, 2019, 150, 52-59.
DOI: 10.1016/j.carbon.2019.04.112
53. Room-Temperature Conversion of Ethane and the Mechanism Understanding over Single Iron Atoms
Confined in Graphene.
S. Wang†, H. Li†, M. He, X. Cui, L. Hua, H. Li, J. Xiao, L. Yu, R. N. Pethan, Z. Xie, D. Deng*,
J. Energy. Chem., 2019, 36, 47-50.
DOI: 10.1016/j.jechem.2019.04.003
52. Exceptional Stability and Chemical Mechanism over Spinel ZnCr2O4 Catalyst for HCl Oxidation to Cl2.
X. Tian, C. Guo, H. Zhong, Y. Zhou*, J. Xiao*,
Mol. Catal., 2019, 470, 82-88.
DOI: 10.1016/j.mcat.2019.03.025
51. Towards Unifying the Concepts of Catalysis in Confined Space.
C. Guo and J. Xiao*,
Comp. Mater. Sci., 2019, 161, 58-63.
DOI: 10.1016/j.commatsci.2019.01.039
50. Towards Computational Design of Catalysts for CO2 Selective Reduction via Reaction Phase
Diagram Analysis. M. Han, X. Fu, A. Cao, C. Guo, W. Chu*, J. Xiao*,
Adv. Theory Simul., 2019, 2, 1800200.
49. N-doped Graphene Confined Pt Nanoparticles for Efficient Semi-hydrogenation of Phenylacetylene.
L. Xia, D. Li, J. Long, F. Huang, L. Yang*, Y. Guo, Z. Jia, J. Xiao*, H. Liu*,
Carbon, 2019, 145, 47-52 .
DOI: 10.1016/j.carbon.2019.01.014
48. Toward Fundamentals of Confined Electrocatalysis in Nanoscale Reactors.
H. Li, C. Guo, Q. Fu, J. Xiao*,
J. Phys. Chem. Lett., 2019, 10, 533-539.
DOI: 10.1021/acs.jpclett.8b03448
47. pH Effects on the Electrochemical Reduction of CO(2) Towards C2 Products on Stepped Copper.
X. Liu, P. Schlexer, J. Xiao, Y. Ji, L. Wang, R. Sandberg, M. Tang, K. Brown, H. Peng, S. Ringe, C. Hahn,
T. Jaramillo, J. Nørskov, K. Chan*,
Nat. Commun., 2019, 10 (1), 32.
DOI: 10.1038/s41467-018-07970-9
46. Room-Temperature Electrochemical Water-Gas Shift Reaction for High Purity Hydrogen Production.
X. Cui†, H. Su†, R. Chen†, L. Yu, J. Dong, C. Ma, S. Wang, J. Li, F. Yang, J. Xiao, M. Zhang,D. Deng*,
D. H. Zhang, Z. Tian, X. Bao,
Nat. Commun., 2019, 10 (1), 86.
DOI: 10.1038/s41467-018-07937-w
45. Unsaturated Edge-anchored Ni Single Atoms on Porous Microwave Exfoliated Graphene Oxide for
Electrochemical CO2. C. Yi†, S. Zhao†, H. Li†, S. He, J.P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan,
M. F. Chisholm, S. Z. Yang*, Ch. Liu*, J. G. Chen, S. P. Jiang*,
Appl. Catal. B Environ., 2019, 243, 294-303.
DOI: 10.1016/j.apcatb.2018.10.046
2018
44. Integration of Theory and Experiment on Mesoporous Nickel Sulfide Microsphere for Hydrogen
Evolution Reaction. A. Wang†, H. Li†, J. Xiao, Y. Lu, M. Zhang, H. Kang, K. Yan*,
ACS Sustain. Chem. Eng., 2018, 6, 15995-16000.
DOI: 10.1021/acssuschemeng.8b04148
43. One-Step Synthesis of NiMn Layered Double Hydroxide Nanosheets Efficient for Water Oxidation.
R Li, Y Liu, H Li, M Zhang, Y Lu, L Zhang, J. Xiao, F Boehm, K Yan*,
Small Methods, 2018, 3, 1800344.
42. Mechanistic Insights into the Synthesis of Higher Alcohols from Syngas on CuCo Alloys.
A. Cao, J. Schumann, T. Wang, L. Zhang, J. Xiao, P. Bothra, Y. Liu, F. Abild-Pedersen*, J. K. Nørskov*,
ACS Catal., 2018, 8, 10148-10155.
41. Carbon doped Hexagonal BN as a Highly Efficient Metal-free Base Catalyst for Knoevenagel
Condensation Reaction. X. Li†,*, B. Lin†, H. Li†, Q. Yu, Y. Ge, X. Jin, X. Liu, Y. Zhou*, J. Xiao*,
Appl. Catal. B Environ., 2018, 239, 254-259.
DOI: 10.1016/j.apcatb.2018.08.021
40. Carbon Dioxide Electroreduction over Imidazolate Ligands Coordinated with Zn (II) Center in ZIFs.
X. Jiang†, H. Li†, J. Xiao, D. Gao, R. Si, F. Yang, Y. Li, G. Wang*, X Bao*,
Nano Energy, 2018, 52, 345-350.
DOI: 10.1016/j.nanoen.2018.07.047
39. Coordinatively Unsaturated Nickel-Nitrogen Sites Towards Selective and High-rate CO2 Electro-
reduction. C. Yan†, H. Li†, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang*, X. Bao*,
Energy & Environ. Sci., 2018, 11, 1204-1210.
38. Highly Efficient Catalytic Scavenging of Oxygen Free Radicals with Graphene-encapsulated Metal
Nanoshields.
J. Wang†, X. Cui†, H. Li†, J. Xiao, J. Yang, X. Mu, H. Liu, Y. Sun, X. Xue, C. Liu, X. Zhang*, D. Deng*, X. Bao,
Nano Res., 2018,11(5), 2821-2835.
DOI: 10.1007/s12274-017-1912-9
37. The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO2
Reduction Conditions: An experimental and Theoretical Study. A. T. Landers†, M. Fields†, D. A. Torelli†,
J. Xiao, T. R. Hellstern, S. A. Francis, C. Tsai, J. Kibsgaard, N. S. Lewis*, K. Chan*, C. Hahn*, T. F. Jaramillo*,
ACS Energy Lett., 2018, 3, 1450-1457.
DOI: 10.1021/acsenergylett.8b00237
36. Robust and Conductive Two-Dimensional Metal−Organic Frameworks with Exceptionally High
Volumetric and Areal Capacitance. D. Feng†, T. Lei†, M.R. Lukatskaya†, J. Park, Z. Huang, M. Lee, L. Shaw,
S. Chen, A.A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J. B. Tok, X. Zou, Y. Cui, Z. Bao*,
Nat. Energy, 2018, 3, 30-36.
DOI: 10.1038/s41560-017-0044-5
35. Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms. X. Cui, H. Li,
Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, F. Yang, L, He, X. Chen, Q. Li, J. Xiao, D. Deng*, X. Bao*,
Chem, 4, 1902-1910, 2018.
DOI: 10.1016/j.chempr.2018.05.006
34. Reaction Mechanisms of Well-defined Metal-N4 Sites in Electrocatalytic CO2 Reduction.
Z. Zhang†, J. Xiao†, X. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S. Wang, X. Meng, Z. Tian, D. Deng*,
Angew. Chem. Int. Ed. 2018, 2018, 57, 16339-16342.
2017
33. Structure and Electronic Properties of Interface-Confined Oxide Nanostructures.
Y. Liu†, Y. Ning†, L. Yu, Z. Zhou, Q. Liu, Y. Zhang, H. Chen, J. Xiao, P. Liu, F. Yang*, X. Bao*,
ACS Nano, 2017, 11, 11449-11458.
32. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal New
Active Site Motifs for CO2 Reduction. Z. W. Ulissi, M. T. Tang, J. Xiao, X. Liu, D. A. Torelli, M. Karamad,
K. Cummins, C. Hahn, N.S. Lewis, T. F. Jaramillo, K. Chan*, J. K. Nørskov*,
ACS Catal., 7, 6600-6608, 2017.
31. Enhanced Oxidation Resistance of Active Nanostructures via Dynamic Size Effect.
Y. Liu†, F. Yang†,*, Y. Zhang, J. Xiao, L. Yu, Q. Liu, Y. Ning, Z. Zhou, H. Chen, W. Huang, P. Liu, X. Bao*,
Nat. Commun., 8, 14459, 2017.
30. Confined Catalysis under Two-dimensional Materials.
H. Li, J. Xiao, Q. Fu*, X. Bao,
Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 5930-5934.
29. Size-dependence of Carbon Nanotube Confinement in Catalysis.
J. Xiao, X. Pan*, F. Zhang, H. Li, X. Bao*,
Chem. Sci., 8, 278-283, 2017.
28. Understanding Trends in Electrochemical Carbon Dioxide Reduction Rates.
X. Liu†, J. Xiao†, H. Peng, X. Hong, K. Chan, J. K. Nørskov*.
Nat. Commun., 8, 15438, 2017.
2016
27. Highly Doped and Exposed Cu(I)-N Active Sites within Graphene Towards Efficient Oxygen Reduction
for Zinc-air Batteries.
H. Wu†, H. Li†, X. Zhao, Q. Liu, J. Wang, J. Xiao, S. Xie, R. Si, F. Yang, S. Miao, X. Guo, G. Wang* and X. Bao*,
Energy Environ. Sci., 9, 3736-3745, 2016.
26. Low Charge Overpotential of Lithium-Oxygen Batteries with Metallic Co Encapsulated in Single-Layer
Graphene Shell as the Catalyst. Y. Tu†, H. Li†, D. Deng*, J. Xiao, X. Cui, D. Ding, M. Chen, X. Bao*,
Nano Energy, 30, 877-884, 2016.
DOI: 10.1016/j.nanoen.2016.08.066
25. Selective Conversion of Syngas to Light Olefins. F. Jiao†, J. Li†, X. Pan†,*, J. Xiao, H. Li, H. Ma, M. Wei,
Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, F. Qi, Q. Fu, X. Bao*,
Science, 351 (6277), 2016, 1065-1068.
24. A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode
for Dye-Sensitized Solar Cells.
X. Cui†, J. Xiao†, Y. Wu, P. Du, R. Si, H. Yang, H. Tian, J. Li, W. Zhang*, D. Deng*, X. Bao,
Angew. Chem. Int. Ed. 2016, 55, 6708-6712.
2015
23. A Single Iron Site Confined in Graphene Matrix for Catalytic Oxidation of Benzene at Room
Temperature. D. Deng, X. Chen, L. Yu, X. Wu, Q. Liu, Y. Liu, H. Yang, H. Tian, Y. Hu, P. Du, R. Si, J. Wang,
X. Cui, H. Li, J. Xiao, T. Xu, J. Deng, F. Yang, J. Zhou, L. Sun, J. Li, X. Pan, X. Bao*,
Sci. Adv. 2015, 1 (11), e1500462.
22. Exploring the Ring Current of Carbon Nanotubes by First-Principles Calculations.
P. Ren, A. Zheng, J. Xiao, X. Pan, X. Bao*,
Chem. Sci., 2015, 6, 902-908.
21. Tailoring the Oxidation Activity of Pt Nanoclusters via Encapsulation.
F. Zhang, F. Jiao, X. Pan,* K. Gao, J. Xiao, S. Zhang, X. Bao*,
ACS Catal., 2015, (5), 1381-1385.
20. Hexagonal Boron Nitride Cover on Pt(111):A New Route to Tune Molecule-Metal Interaction and
Metal-Catalyzed Reactions. Y. Zhang, X. Weng, H. Li, H. Li, M. Wei, J. Xiao, Z. Liu, M. Chen,* Q. Fu,* X. Bao,
Nano Lett., 2015, 15, 3616-3623.
DOI: 10.1021/acs.nanolett.5b01205
19. Creating Nano-Space under h-BN Cover for Adlayer Growth on Ni(111).
Y. Yang, Q, Fu,* H. Li, M. Wei, J. Xiao, W. Wei, X. Bao,
ACS Nano, 2015, 9 (12), 11589-11598.
18. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2
surface via single-atom metal doping. J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng*, H. Yang, H. Tian, J. Li, X. Bao*,
Energy Environ. Sci., 2015, 8, 1594-1601.
17. Visualizing Electronic Interactions Between Iron and Carbon by X-ray Chemical Imaging and
Spectroscopy. X. Chen†, J. Xiao†, J. Wang, D. Deng*, Y. Hu, J. Zhou, L. Yu, T. Heine, X. Pan, X. Bao*,
Chem. Sci., 2015, 6, 3262-3267.
16. Toward Rational Design of Catalysts Supported on a Topological Insulator Substrate.
J. Xiao*, L. Kou, C. Y. Yam, T. Frauenheim, B. Yan.
ACS Catal., 2015, 5 (12), 7063-7067.
15. Toward Fundamentals of Confined Catalysis in Carbon Nanotubes.
J. Xiao, X. Pan*, S. Guo, P. Ren, X. Bao*,
J. Am. Chem. Soc., 2015, 137, 477-482.
2014
14. Oxygen Vacancy Diffusion in Bare ZnO Nanowire.
B. Dei, A. L. Rosa, T. Frauenheim, J. Xiao, X. Q. Shi, R. Q. Zhang*, M. A. Hove,
Nanoscale, 2014 (6), 11882-11886 .
13. Theoretical Prediction of Carbon Dioxide Reduction to Methane at Coordinatively Unsaturated Ferric
Sites in the Presence of Cu Impurities. J. Xiao*, and T. Frauenheim,
Phys. Chem. Chem. Phys., 2014, 16 (8), 3515-3519.
12. Structural Evolution of Active Sites of Cu/ZnO Catalysts: From Reactive Environments to Ultrahigh
Vacuum Condition. J. Xiao*, A. L. Rosa, R. Zhang, W. Y. Teoh, T. Frauenheim,
ChemCatChem, 2014 (6) 2322-2326 .
11. CO2 Reduction at Low Overpotential on Cu Electrodes in the Presence of Impurities at Subsurface.
J. Xiao*, A. Kuc, T. Frauenheim, T. Heine,
J. Mater. Chem. A, 2014, 2, 4885-4889.
10. Stabilization Mechanism of ZnO Nanoparticles by Fe Doping.
J. Xiao, A. Kuc, T. Frauenheim, T. Heine*,
Phys. Rev. Lett., 2014, 112, 106102.
DOI: 10.1103/PhysRevLett.112.106102
2013
9. Theoretical Characterizations of Spinels Containing Iron and Vanadium via ab initio Calculations.
J. Xiao*, B. Xie and Y. Wang.
ISIJ Int., 2013 (53) 245-249.
DOI: 10.2355/isijinternational.53.245
8. Theoretical Insights into CO2 Activation and Reduction on the Ag(111) Monolayer Supported on a
ZnO(0001) Substrate. J. Xiao* and T. Frauenheim,
J. Phys. Chem. C, 2013 (117) 1804-1808.
7. Temperature Mediated Magnetism in Fe-doped ZnO Semiconductors.
J. Xiao, T. Frauenheim, T. Heine, A. Kuc*,
J. Phys. Chem. C, 2013 (117) 5338-5342.
6. Fe-Doped ZnO Nanoparticles: The Oxidation Number and Local Charge on Iron, Studied by 57Fe
Möβbauer Spectroscopy and DFT calculations.
J. Xiao, A. Kuc, S. Pokhrel, L. Mädler, R. Pöttgen, F. Winter, T. Frauenheim, T. Heine*,
Chem. Eur. J., 2013 (19) 3287-3291.
2012
5. Activation Mechanism of Carbon Monoxide on α-Fe2O3 (0001) Surface Studied by Using First Principle
Calculations. J. Xiao* and T. Frauenheim,
Appl. Phys. Lett., 2012 (101) 041603/1-3.
4. Activity and Synergy Effects on a Cu/ZnO(0001) Surface Studied Using First-Principle Thermodynamics.
J. Xiao* and T. Frauenheim.
J. Phys. Chem. Lett., 2012 (3) 2638−2642.
2011
3. Evidence for Fe2+ in Wurtzite Coordination: Iron Doping Stabilizes ZnO Nanoparticles.
J. Xiao, A. Kuc, S. Pokhrel, M. Schowalter, S. Porlapalli, A. Rosenauer, T. Frauenheim, L. Mädler,
L. G. M. Pettersson, T. Heine*,
Small, 2011(7) 2879-2886.
2009
2. Radiative Heat Transfer in Transition Metal Oxides Contained in Mold Fluxes.
J. Diao, B. Xie*, J. Xiao, C. Ji,
ISIJ Int., 2009 (49) 1710-1714.
DOI: 10.2355/isijinternational.49.1710
1. Experimental Investigation into Radiative Heat Transfer Characteristics for Mould Fluxes Containing
Transition Oxides. J. Diao, B. Xie*, J. Xiao,
Ironmak. Steelmak., 2009 (36) 610-614.
DOI: 10.1179/030192309X12492910938096